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ABSTRACT-A simple two-level model was used to explore 
the effect of diabatic heating in the atmosphere. Non- 
trivial solutions for the steady-state condition were found 
only when diabatic heating was allowed. The steady state 
was characterized by a state of no motion and no growth 
or decay of energy for a particular wave number. The state 
of no motion was brought about by a balance between 
the Rossby motion and the motion produced by the diver- 

gence associated with the heating. 
The model was used to compute the heating required to 

account for the observed behavior of individual harmonic 
components in the atmosphere for the period Jan. 10-14, 
1966. The computed magnitudes and positions of the 
heating waves correlated well with previous results relating 
to this subject. 

1. INTRODUCTION 
Linearized two-level models have frequently been used 

to explain the characteristics of atmospheric behavior. In  
recent years, the diabatic term has been added to these 
models in attempts to  clarify its role. Haltiner (1967) used 
a nondivergent model to  describe the effect of the heating. 
He found that the heating contributed to the baroclinic 
instability, but that there was no appreciable difference 
between the phase speeds in his model and in adiabatic 
models; that is, the long waves retrogressed at  a speed 
equal to the Rossby speed. 

Later, DOOs (1969) used a model in which divergence 
was allowed, to study the role of heating. His solutions 
consisted of a stationary part and a traveling part. For 
long waves, the stationary part compared well with 
observed mean conditions. 

In  this paper, a simple two-level model is developed that 
yielded further data concerning the behavior of the atmos- 
phere under the influence of heating. The model allowed 
for a nonzero, vertically integrated divergence term by 
letting the heating approach a value of zero at  the top 
level, and being different from zero below. The introduc- 
tion of net divergence in this manner greatly reduced the 
retrogression of the long waves and produced a strong 
coupling between the pressure and thermal waves. 

2. BASIC ASSUMPTIONS 
AND MODEL DESCRIPTION 

The upper and lower boundaries of the model are 200 
mb (p4) and 1000 mb (po), respectively. In this layer, the 
mean wind is assumed to increase linearly with decreasing 
pressure. Diabatic heating is introduced having at  most 
a second-order variation (Taylor series) with pressure, 
becoming zero at  the upper boundary. The vertical 
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velocity, w, in pressure coordinates is also assumed to have 
at most a second-order variation With pressure and to be 
zero at  the lower boundary. At the upper boundary, w 
remains free to take on any value and, thus, permits a 
finite value of the vertically integrated divergence. It is 
assumed that the horizontal components of the wind 
velocity can be approximated by a stream function with 
negligible error (i.e., u =-a$& and 1) = a$/ax). The 
stream function varies linearly with respect to pressure. 
All other variations in y are set to zero. 

3. FORMULATION OF GOVERNING EQUATIONS 

The symbols used in the derivation have their common 
meteorological meanings. However, the symbols not 
commonly used are shown in table 1. 

The primary equation used to describe the behavior 
of the long waves was the vertical component of the 
vorticity equation; that is, 

A thermal vorticity equation was derived by taking the 
first derivative of eq (1) with respect to pressure. Pertur- 
bation principles were applied, and the equations were 
linearized. Afterwards, the integrals defining the vertical 
average and thermal quantities were applied. The results 
were the following equations for the pressure and thermal 
perturbations: 

and 
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TABLE 1.-The less common symbols used in this paper . 

perturbation strea.m function of the pressure wave 
perturbation stream function of the thermal wave 
mean west-east component of the wind 
mean west-east component of the thermal wind 
p,-po=200 mb- 1000 mb= -800 mb 
heating at  1000-mb surface 
second derivative of heating 
stability factor 
system constants involving pressure levels 

r2=p,"-p:+zp,pa In (E) 

Fourier coefficients of the pressure wave 
Fourier coefficients of the thermal wave 
Fourier coefficients of the surface heating wave 
Fourier coefficients of the second derivative heating wave 

wave number units of one over length 

f=2nn/L 

wavelength 
nondimensional wave number 
pressure wave speed 
thermal wave speed 
phase angle of pressure wave 
phase angle of thermal wave 
phase angle of surface heating wave 
phase angle of second derivative heating wave 
amplitude of pressure wave 

a2,=A2 m + B K  

amplitude of thermal wave 

a2,=A2,+ B; 

amplitude of surface heating wave 

h?=h:' +hi 

amplitude of second derivative heating wave 

nz= rI; + II; 

The expressions for the divergence and for 'the vertical 
velocity were derived from the first law of thermodyna- 
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mics; that is, 

where 4 is the geopotential and for this study the approxi- 
mation 4 = f1C/ was employed, and His the rate of heating 
per unit mass. The heating rate was assumed to have, a t  
most, a second-order variability with pressure. A Taylor 
expansion was used to describe this variability. Application 
of the upper boundary condition, H=Q at p=2Q cb, 
allowed us to substitute for the first-order term so that 
the expression for the heat term was 

To derive the w-equation, we applied perturbation prin- 
ciples to  the above expression and the resulting equation 
was linearized. Then the averaging integral was applied. 
The divergence equation was derived by taking the first 
derivative of the first law of thermodynamics with respect 
to pressure, applying perturbation principles, linearizing, 
and applying the averaging integral. The resulting expres- 
sions for the w-equation and the divergence equation were, 
respectively, 

and 
(4) 

(5) 

For eq (5), we assumed that 

Equation (5) poses a constraint on the atmosphere; that 
is, the mean divergence is a result of the heating alone, 
which requires that the temperature difference between 
top and bottom of the atmosphere remains a constant 
following the motion. This is accomplished by making the 
total change in temperature at  the surface due to heating 
equivalent to the total change in temperature at  the top 
of the atmosphere due to the work done in compression 
or expansion. Though this was a very limiting constraint, 
we believe that, as a first approximation, the retention of 
the previously neglected net divergence through heating 
alone lends a degree of truth to  the model and will relate 
some aspects of the role of diabetic heating in the 
atmosphere. 

T o  find an expression for the second derivative of w ,  we 
assumed that w could be expressed about some pressure 
level p L  by 

Employing the lower boundary condition that w=O at 
p=po, and integrating over increments of pL,  we obtained 



ml the following expression: Hi= -- hl, k2 r->,=, 1 [- AP (-)4. aut 

2 aP 

Substitution of eq (4)-(6) into eq (2 )  and (3 )  yielded 
the following prediction equations: 

where 

and 

mlpo  r2 
4 7-3 

m3=- --t 

A solution to  eq (7) and (8) was obtained by letting 

#;=E (A ,  cos kx+B, sin k x ) ,  

+;=E ( A T  cos kx+ B ,  sin k x ) ,  

H o = C  (hl cos ks+h2 sin kx ) ,  

-=E (II, cos ks+I12 sinks). a2H 
and 

aP2 

This yielded the following system of prediction equations : 

T1 =(",-b) k ,  

- 
U k  T 2 = r -  7 

12 

Since eq (7) and (8) are linear, there is no loss of generality 
if we consider individual wave components as in eq (9). 

From the above equations, the expressions for the 
phase speeds for the pressure and thermal waves were 
derived; they are, 

and 

(11)  
m2 h m311 sin (aHp-aT). 

- - sin (aH-aT)- k(k2-m4) U T  k(k2-m4) 

For the case of adiabatic motion (h=II=O), these phase 
speeds are consistent with those formulated in other two- 
level models. In  the adiabatic case and for long waves, the 
Rossby term controls the pressure wave speed. The re- 
maining term, which is a baroclinic term, is small in com- 
parison; thus, the long pressure waves will retrogress. The 
Rossby term is modified by the stability of the atmosphere 
in the expression for the thermal wave speed. The stability 
term is two orders of magnitude larger than the square of 
the wave number for long waves, which considerably 
reduces the retrogression or even produces progression of 
the long thermal waves for certain westerly wind speeds. 
This is identical to the disjointed behavior of the two 
waves described by Wiin-Nielsen (1961). The effect of the 
heating will be discussed later. 

The time rate of change of kinetic energy of the two 
waves are given by the following: 

m1 
k2 kU,mUT sin (am-aT)--  a,h COS ((Y,-cYH) (12)  i a  C _ -  at a&=' 

12 
(9) 

and 

For the adiabatic case, these expressions are also consist- 
ent with those formulated in other two-level models. Note 
that, if we assume that there is no perturbation energy in 
this system in the initial state, the total growth of kinetic 
energy in the model would come directly from the effect 
of heating and indirectly from 'the subsequent baroclinic 
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growth that would ensue; there could never be a transfer Gz(HJ 0 )  =TIHI + T,Hz, 
of energy from the mean motion to the perturbation motion 
in a linear model. 

The characteristic equation for each of the four Fourier 
coefficients was derived through simultaneous solution of 
eq (9). It takes the form 

and 

G ~ H J  0) =-Ti( TiH3-k TzH4) -Tz(TsH3+T4 H4) ; 

if [=AT, 

GI (H,  O)=Hz, 

($+u$+b) [=G(H,  t )  (14) GdHJ O)=-(T3H3+T4H4), 
and 

where 

and [ is a dummy parameter that is replaced by any of the 
Fourier coefficients. The parameter G is the forcing 
function, which is a function of heating and time and 
involves, a t  most, third-order derivatives of the heating. 
The exact expression for G will depend on which coefficient 
replaces [ 

The particular solution for eq (14), under the condition 
that the forcing function is time independent and with the 
boundary conditions t = O ,  a@t= G1(H,O), d2@3t2= Gz(H,O), 
and 8[/at"=G3(H,0) whe:n t=O,  is 

f 

- 
+Gz(H, O)[cos $$t-cos d T  .+et ] 

where F=a2-4b. The initial values of the derivatives, 
Gl(H,O), Gz(H,O), and G3(H,0), can be derived from eq (9) 
by taking derivatives of these expressions and setting the 
coefficients equal to  zero. They are time independent 
since the heating is time independent. The expressions 
are : 

if [=A,, 

Gi(H, O)=Hi, 

Gz( H ,  0) = - (TiH3+ TzH4) , 
and 

G3( Hl 0) = -Ti ( TiHi + T Z U  - T ~ ( T ~ H I  + T4Hz) ; 

if ,$=B,, 

Gi(H, o)=H3, 
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GdH,  0 )  =- T3(TiH3+ TzH4) - T4(T3H3+ T4H4). 

The diabatic forcing function, G(H, O)/b,  will be discussed 
later. 

The solution has a forced response due to heating and a 
transient response due to convective and dynamic trans- 
ports. It has, provided JF is real and a>O, oscillations 
about the forced response with two periods that are related 
to the Rossby motion of the pressure and thermal waves 
(Vukovich and Chow 1968.). This compares favorably 
with the solution of DOOs (1969). Note that the solution 
is zero if heating is zero. 

4. STABILITY CRITERIA 

equation are derived from the eigenfupction, 
The stability criteria for the fourth-order differential 

where m. is the eigenvalue of the differential equation. 
Since b 2 0 always, then if F > 0 and a > 0 ,  m will be 
imaginary and the waves are neutral. However, if F < 0,  
the expression in the first radical will be complex, the 
solution will have a positive real part, and the waves will 
be unstable. The values for F versus wave number were 
computed for mean winds of 20 and 40 m/s, thermal 
winds of 10, 20, 30, and 40 m/s, 45' latitude, and a stand- 
ard atmospheric lapse rate. The results are given in figures 
1 and 2. 

Figure 1 yields the stability criteria for a mean wind 
of 20 m/s. The numbers in parentheses are the thermal 
wind speeds. Only the regions in the neighborhood of the 
unstable waves are plotted. Wave numbers greater than 
15 are always neutral for the parameters used. With a 
thermal wind of 10 m/s or less, all waves are neutral. For 
thermal wind speeds somewhere between 10 and 20 m/s, 
a transition occurs and a finite band of long waves becomes 
unstable (F<O). In  general, the unstable wave band is 
centered about wave number 8. The effect of increasing 
the thermal wind is to' broaden the band of unstable 



FIGURE 1.-The parameter, F ,  versus wave number for urn of 20 m/s. 
The values of f i ~  (m/s) are in parentheses. When F>O, the waves 
are neutral, and when F<O, the waves are unstable. 

FIGURE 2 . S a m e  as figure 1 for Crn of 40 m/s. 

waves. Increasing the mean wind speed to 40 m/s does 
not change the nature of the solution appreciably (fig. 2). 
These solutions are in general agreement with those of 
Charney (1947), Gates (1961), and Ogura (1957). 

Figures 3 and 4 yield the effect of varying latitude 
on the stability parameter, 8'. Figure 3 gives this variation 
for a mean wind speed of 10 m/s and a thermal wind speed 
of 10 m/s. The standard atmospheric lapse rate is also 
employed for these computations. The numbers in the 
parentheses are the latitudes. From 30' to  45O latitude, 
all waves are neutral. However, between 45' and 60' 
latitude, instability is formed in a narrow band centered 
about wave number 6 because of the reduced effec- 
tiveness of the Rossby parameter. For mean and thermal 
wind speeds of 40 m/s, increasing the latitude shifts the 
band of unstable waves toward lower wave numbers 
(fig. 4). The number of unstable waves also decreases 
with increasing latitude. 

I e I I 3 5 i7 9 I I  13 15 . :  2 .. - 
-19 E - -10 

=! 
m 
i5 

-UNSTABLE 

in I I 

FIGURE 3.-The parameter, F, versus latitude for Crn and 8, of 
10 m/s. The latitudes (deg.) are in parentheses. The waves are 
unstable when F<O. 

FIGURE 4 . S a m e  as figure 3 for urn and UT of 40 m/s. 

5. STEADY-STATE SOLUTION AND 
THE FORCED RESPONSE 

If heating were everywhere zero, the steady-state 
solution for the Fourier coefficients in eq (9) would be 
trivial; that is, the coefficients must be identically zero. 
In this study, the nontrivial solution can only arise if 
heating exists. A steady state can also be obtained when 
the atmosphere is influenced by topography. I n  essence, 
to obtain a steady state, the atmosphere in the linear 
problem must be under the influence of a forcing function. 
There remains the possibility that a steady state may be 
achieved without a forcing function if nonlinear inter- 
actions are allowed. 

The existence of a steady-state solution indicates that 
the heating, and the subsequently induced baroclinicity, 
is balancing the Rossby motion (not possible in adiabatic 
models) and that energy in either the pressure or thermal 
wave is not being created by either the baroclinic or the 
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diabatic forces. This state usually characterizes the ultra- 
long waves. The steady-state solutions are 

and 

These solutions are identical to the forced response 
[G(H,O)/b] in eq (15) when the heating is time independent. 

One must remember that a steady state cannot be 
attained without the influence of friction. Examination of 
eq (15) shows that the transient response is nondissipa- 
tive, so that steady-state solutions will never be achieved. 
However, we believe that studying the steady-state solu- 
tion will yield insight into the quantitative behavior of 
the atmosphere, since the steady-state solution is identi- 
cal with the forced response when the forcing function 
is independent of time. 

Characteristic heating amplitudes consistent with the 
experiments of Doos (1961) and Ninomiya (1964) were 
chosen to compute corresponding steady-state amplitudes 
and phases for the pressure and thermal waves. Doos 
and Ninomiya determined tha magnitude of synoptic 
diabatic heating near the earth's surface. Doos arrived 
a t  a value of approximately 10X10-5J.g-1.s-' and 
Ninomiya obtained a value of 6 X  J-g-l-s-'. Nino- 
miya's computations were for the very intense winter 
heating over the Sea of Japan, but his value was less than 
that of Doos because it was a 10-day average value. 

These heating computations provided specific values 
of surface heating over specific areas and reflected the 
sum of all harmonics for a given latitude. Therefore, a 
value considerably less than the values they computed 
should be used for the heating amplitude of a single har- 
monic. For the following computations, a value exactly 
one-tenth that of Doos (1.OX J.g-'.s-') was chosen 
for a characteristic amplitude of a given harmonic. 

To simplify the computations, we assumed the phase 
angle of the heating waves to  be zero. All of the phase 
angles would be referred to  the location of the heating 
wave. Furthermore, the heating is assumed to vary linearly 
with pressure (i.e., a2Hp3pz=O). By these assumptions, 
the thermal and pressure waves would have to  have a 
phase angle of 590'  with respect to the heating wave, 
and they would have to be either in phase or 180' out of 
phase with respect to each other [i.e., AT=A,=O because 
hz= (a2H/ap2) = 01. One can see that, under these condi- 
tions, the baroclinic term and the heating term contribute 
their maximum effect to the speed of the pressure and 
thermal waves [eq (10) and ( l l ) ] .  The phase relationships 
create a zero time derivative for the kinetic energy of 
both waves [eq (12) and (13)]. 
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FIGURE 5.-(A) amplitude (m) and (B)phase of the pressure and 
thermal waves at 4 5 O  latitude for Urn and UT of 10 m/s. 

Figure 5A yields the amplitude spectrum for the pres- 
sure and thermal waves when the mean and thermal wind 
were both 10 m/s. The latitude was 45'. The most excited 
mode is wave number 1. A secondary maximum, found 
at  wave number 5 for both waves, is due to the addition 
of heat at  a frequency nearly equal to  one of the natural 
frequencies of the system. If friction were included in the 
model, resonance would be prevented and infinite ampli- 
tudes would not occur. However, large, bounded per- 
turbations would still exist at  wave numbers in the near 
vicinity of nonfrictional resonance (Smagorinsky 1953). 
This result is in contrast with that of Derome and Wiin- 
Nielsen (1971) in which no effects of resonance were 
found in their heating model. However, differences may be 
due to parameters used. 

The pressure and thermal waves are in phase (fig. 5B) 
up to wave number 11, indicating that the pressure 
perturbation increases with decreasing pressure along the 
local vertical for these wave numbers. I n  an earlier study 
by Smagorinsky (1953) , he found that the perturbations 
decreased with decreasing pressure a t  35' latitude, but 
increased a t  60' latitude. Derome and Wiin-Nielsen (1971) 
and Murakami (1967) found that only the ultralong 
waves increased with decreasing pressure. In  the present 
study, the perturbation decreases with decreasing pressure 
only after wave number 10. 

When the waves are displaced upstream of the heating 
wave (waves 1-6), surface heating is found in regions of 
southward geostrophic flow, and surface cooling occurs 
in regions of northward geostrophic flow in the Northern 
Hemiphere. This is consistent with the concept that air 
from the polar regions is warmed moving southward, and 
tropical air is cooled during its northward movement. 
However, when the waves are displaced downstream of 
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FIGURE 6 . 4 a m e  as figure 5 for urn and UT of 30 m/s. 

the heating wave (waves 6-11), the correlation between 
the geostrophic transport and the heating does not occur. 
In  developing the solution of eq (14), we assumed the 
heating to be time independent. This means that neither 
the amplitude nor the phase changes. Consequently, the 
heating is fixed in space and is due, therefore, to the 
surface temperature distribution and not to the geo- 
strophic flow. 

Increasing both the mean and thermal wind to 30 m/s 
decreases the wave number of nonfrictional resonance to 3 
(fig. 6A), which is also the most excited mode. The phase 
relationship (fig. 6B) is the same as before except that the 
transition from upstream to downstream displacement is 
now found around wave number 3. 

The effect of varying the latitude on the pressure and 
thermal wave amplitude is given in figure 7. The mean 
and thermal wind are both 30 m/s for these calculations. 
Nonfrictional resonance is found near wave number 4 
for 30' latitude, near wave number 3 for 45', and near 
wave number 2 for 30'. Apparently, increasing the lati- 
tude decreases the wave number at  which nonfrictional 
resonance is found. 

Fujita (1956) has shown that the ultralong waves (wave 
nos. 1-3) are in quasi-steady state. The pressure wave 
amplitudes he found were 50 m for wave number 1 and 
60 m for wave numbers 2 and 3. In  the present study, 
the forced response, which is also the steady-state solution, 
yielded pressure amplitudes of 55 m for wave number 1, 
30 m for wave number 2, and 25 m for wave number 3. 
Though a steady-state solution is not possible in a non- 
dissipative model, these pressure wave amplitudes, which 
are indicative of amplitudes to be expected under the 
action of friction, indicate that a heating amplitude of as 
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5 100 
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I a 
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FIGURE 7.-(A) pressure wave and (B) thermal wave amplitudes 
versus latitude for 0, and UT of 30 m/s. 

little as 1.0X10-5J-g-1.s-1 is sufficient to stop the retro- 
gression that usually characterizes these waves. 

6. PHYSICAL EXPERIMENT 

The heating distribution required to account for the 
observed behavior of individual harmonic components in 
the atmosphere for the period Jan. 10-14, 1966, was 
computed. The Fourier coefficients for the pressure and 
thermal waves were computed for 30°, 45', and 60'N 
latitude. For each wave number and each latitude, the 
derived amplitudes and their time derivatives were sub- 
stituted into eq (9), and the surface heating necessary to 
bring about this observed behavior was computed. 

Figure 8 yields the resultant surface heating distribu- 
tion after summing over wave numbers 1, 2, and 3 at 
45'N latitude. The resultant pressure distribution is also 
depicted. Negative values correspond to low pressure and 
positive values, to high pressure. Both sets of data  
represent an average over the period. 

The order of magnitude of the heating is comparable 
to values derived by DOOs (1961) and Ninomiya (1964). 
The fact that the present magnitudes are less than theirs 
is to  be expected since these results represent the sum of 
three wave numbers and theirs represent the sum of all 
wave numbers. The pressure wave lags the heating by 
approximately 90°, and the pressure and thermal waves 
are approximately in phase (not shown in figure), which 
is indicative of a quasi-steady-state condition that 
normally characterizes these waves. Heating is found in 
regions of southward geostrophic flow, and cooling, in 
regions of northward geotrophic flow. The figure shows 
two heating regions centered over eastern Asia and eastern 
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8.-The longitudinal distribution of the pressure wave height (m) and the surface heating (10-5 J.g-1.s-1) a t  45'N 
wave numbers 1-3 and averaging over the period Jan. 10-14, 1966. 
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FIGURE 9.-Analysis of height distribution (f t )  of the pressure wave and the surface heating (10-7 J . gl . s-l) in the latitude belt 30°-600N, 
summing wave numbers 1-6 and aveiaging over the period Jan. 10-14, 1966, for the Eastern Hemisphere. 

North America and two cooling regions centered over 
the east-central Pacific Ocean and western Europe. The 
maximum heating (approx. 3.0X J*g-'.s-') is found 
over eastern Asia. The location of the pressure troughs 
and ridges compares well with those found by Fujita 
(1956) , which demonstrates the consistency of these 
waves. Because the heating is not steady state, heating 
zones must be k e d  features of the flow associated with 
these waves. 

The surface heating distribution that is derived by 
summing over wave numbers 1-6 and the corresponding 
pressure distribution for all latitudes are represented in 
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figures 9 and 10. The values are averages over the period, 
as before. Again, the magnitude of the heating compares 
well with the values given by DOos and Ninomiya. The 
phase difference between the two waves varies markedly, 
indicative of non-steady-state conditions. This should occur 
since waves that fall within the unstable category are 
included in the summation. The high frequency of cooling 
and heating centers is expected, since the pressure dis- 
tribution indicates marked variations in the flow. 

The surface heating distx'ibution determined by summing 
wave numbers 1-9 for all latitudes is represented in figure 
11. Only longitudes 55"W to  115"W are shown. Again, the 
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FIQURE 10.-Same as figure 9 for the Western Hemisphere. 
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FIGURE 11.-Surface pressure analysis (mb) of the eastern part of 
North America for 0600 GMT; Jan. 12, 1966, and the surface 
heating analysis (lo-' J . E-' . s-l) of eastern North America, 
summing wave numbers i-9 and averaging over the period 
Jan. 10-14, 1966. 

values are averages over the period. Also shown in the 
figure is the 0600 GMT surface pressure chart for the 
region for Jan. 12, 1966. The maximum heating is twice 
that found by Doos. The correlation between zones of 
heating and cooling and zones of northward and southwa;rd 
geostrophic flow at the surface is remcirkable considering 
the simplicity of the model. 

7. CONCLUSIONS 

The general nature of the solution obtained in this study 
has similar characteristics to  that found by Doos (1969); 
that is, the solution consists of a forced response and a 
transient response. The transient response contains two 
response periods that are associated with the Rossby 
motion of the pressure and thermal wave (Vukovich and 
Chow 1968a). The time-independent, forced response is 
shown to be the steady-state solution, and a nontrivial 
steady-state solution is possible if heating existed. 

J.g-'.s-' for surface 
heating, we computed steady-state pressure wave am- 
plitudes. These amplitudes compare well with observa- 
tional data, which indicates that surface heating per- 
turbations with amplitudes as little as 1.0 X J.g-'.s-' 
are sufficient to compensate for the retrogression of the 
long waves produced by the Rossby motion. 

If heat is added to the atmosphere a t  all frequencies, 
the most excited wave number for both the pressure and 
thermal waves, in most cases, corresponds to that wave 
number nearest the natural frequency of the system. 
Friction produces bounded amplitudes in the near Vicinity 
of the resonance frequency. The wave number a t  which 
resonance occurs decreases as the mean and thermal 
wind speed increases and as the latitude increases. For the 
cases studied, the pressure and thermal waves are in phase 
and are displaced upstream or downstream 90' from the 
heating wave for wave numbers less than 11. The perturba- 
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tions, therefore, increase with decreasing pressure. For 
wave numbers 11 or greater, the thermal and pressure 
wave are 180” out of phase and the perturbations decrease 
with decreasing pressure. 

The magnitudes of heating computed in the physical 
experiment compare well with those found by other 
researchers (Doos 1961, Ninomiya 1964). The ultralong 
waves (wave nos. 1-3) satisfy the steady-state criteria. 
The positions of the pressure troughs and ridges compare 
well with those found by Fujita (1956). Two heating 
regions and two cooling regions were found. These regions 
are directly correlated to the geostrophic flow, which is 
consistent with the results of Kindle et al. (1967) and 
Vukovich and Chow (1968b). The heating regions are 
located over eastern Asia and eastern North America, and 
the cooling regions are found over the east-central Pacific 
Ocean and western Europe. Since these waves are in 
quasi-steady state and the heating varies with time, the 
heating patterns must be fixed features of the flow. 

When the results of the calculations for shorter wave 
heating were included in the analysis, the characteristics 
of the steady-state solution no IongeT existed. This was to 
be expected since wave numbers were now included which 
fell within the categmy of btiroclinically unstable waves. 
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